

PROFESSIONAL
C++

INTRODUCTION . . xlvii

▸▸ PART I	 INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1	 A Crash Course in C++ and the Standard Library. 3

CHAPTER 2	 Working with Strings and String Views. . 87

CHAPTER 3	 Coding with Style. . 111

▸▸ PART II	 PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4	 Designing Professional C++ Programs . . 137

CHAPTER 5	 Designing with Objects . . 169

CHAPTER 6	 Designing for Reuse. . 187

▸▸ PART III	 C++ CODING THE PROFESSIONAL WAY

CHAPTER 7	 Memory Management. . 211

CHAPTER 8	 Gaining Proficiency with Classes and Objects. 249

CHAPTER 9	 Mastering Classes and Objects. . 283

CHAPTER 10	 Discovering Inheritance Techniques. . 337

CHAPTER 11	 Odds and Ends. . 397

CHAPTER 12	 Writing Generic Code with Templates. . 421

CHAPTER 13	 Demystifying C++ I/O. . 465

CHAPTER 14	 Handling Errors. . 495

CHAPTER 15	 Overloading C++ Operators. . 535

CHAPTER 16	 Overview of the C++ Standard Library. . 573

CHAPTER 17	 Understanding Iterators and the Ranges Library. 603

CHAPTER 18	 Standard Library Containers . . 627

CHAPTER 19	 �Function Pointers, Function Objects, and
Lambda Expressions. . 699

CHAPTER 20	 Mastering Standard Library Algorithms. . 725

Continues

CHAPTER 21	 String Localization and Regular Expressions. 763

CHAPTER 22	 Date and Time Utilities. . 793

CHAPTER 23	 Random Number Facilities. . 809

CHAPTER 24	 Additional Library Utilities. . 821

▸▸ PART IV	 MASTERING ADVANCED FEATURES OF C++

CHAPTER 25	 Customizing and Extending the Standard Library. 833

CHAPTER 26	 Advanced Templates . . 877

CHAPTER 27	 Multithreaded Programming with C++. . 915

▸▸ PART V	 C++ SOFTWARE ENGINEERING

CHAPTER 28	 Maximizing Software Engineering Methods. 971

CHAPTER 29	 Writing Efficient C++. . 993

CHAPTER 30	 Becoming Adept at Testing. . 1021

CHAPTER 31	 Conquering Debugging. . 1045

CHAPTER 32	 Incorporating Design Techniques and Frameworks. 1083

CHAPTER 33	 Applying Design Patterns. 1105

CHAPTER 34	 Developing Cross-Platform and Cross-Language Applications. . . . 1137

▸▸ PART VI	 APPENDICES

APPENDIX A	 C++ Interviews. . 1165

APPENDIX B	 Annotated Bibliography. . 1191

APPENDIX C	 Standard Library Header Files. . 1203

APPENDIX D	 Introduction to UML. . 1213

INDEX. . 1219

PROFESSIONAL

C++

PROFESSIONAL

C++

Fifth Edition

Marc Gregoire

Professional C++

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada and the United Kingdom

ISBN: 978-1-119-69540-0
ISBN: 978-1-119-69550-9 (ebk)
ISBN: 978-1-119-69545-5 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at booksupport.wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020950208

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

Dedicated to my wonderful parents and my brother,

who are always there for me. Their support and

patience helped me in finishing this book.

ABOUT THE AUTHOR

MARC GREGOIRE  is a software architect from Belgium. He graduated from the University of
Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software architect
at Nikon Metrology (nikonmetrology.com), a division of Nikon and a leading provider of preci-
sion optical instruments, X-ray machines, and metrology solutions for X-ray, CT, and 3-D geometric
inspection.

His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework. He has experi-
ence in developing C++ programs running 24/7 on Windows and Linux platforms: for example,
KNX/EIB home automation software. In addition to C/C++, Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (becpp.org), co-author of C++ Standard
Library Quick Reference 1st and 2nd editions (Apress), a technical editor for numerous books for
several publishers, and a regular speaker at the CppCon C++ conference. He maintains a blog at
www.nuonsoft.com/blog/ and is passionate about traveling and gastronomic restaurants.

ABOUT THE TECHNICAL EDITORS

PETER VAN WEERT  is a Belgian software engineer whose main interests and expertise are application
software development, programming languages, algorithms, and data structures.

He received his master of science degree in computer science summa cum laude with congratulations
from the Board of Examiners from the University of Leuven. In 2010, he completed his PhD thesis on
the design and efficient compilation of rule-based programming languages at the research group for
declarative programming languages and artificial intelligence. During his doctoral studies he was a
teaching assistant for object-oriented programming (Java), software analysis and design, and declara-
tive programming.

Peter then joined Nikon Metrology, where he worked on large-scale, industrial application software
in the area of 3-D laser scanning and point cloud inspection for over six years. Today, Peter is senior
C++ engineer and Scrum team leader at Medicim, the R&D unit for digital dentistry software of
Envista Holdings. At Medicim, he codevelops a suite of applications for dental professionals, capable
of capturing patient data from a wide range of hardware, with advanced diagnostic functionality and
support for implant planning and prosthetic design.

Common themes in his professional career include advanced desktop application development,
mastering and refactoring of code bases of millions of lines of C++ code, high-performant, real-time
processing of 3-D data, concurrency, algorithms and data structures, interfacing with cutting-edge
hardware, and leading agile development teams.

Peter is a regular speaker at, and board member of, the Belgian C++ Users Group. He also
co-authored two books: C++ Standard Library Quick Reference and Beginning C++ (5th edition),
both published by Apress.

OCKERT J. DU PREEZ is a self-taught developer who started learning programming in the days of
QBasic. He has written hundreds of developer articles over the years detailing his programming
quests and adventures. His articles can be found on CodeGuru (codeguru.com), Developer.com
(developer.com), DevX (devx.com), and Database Journal (databasejournal.com). Software
development is his second love, just after his wife and child.

He knows a broad spectrum of development languages including C++, C#, VB.NET, JavaScript, and
HTML. He has written the books Visual Studio 2019 In-Depth (BpB Publications) and JavaScript for
Gurus (BpB Publications).

He was a Microsoft Most Valuable Professional for .NET (2008–2017).

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS AND WROX PRESS  editorial and production teams for their sup-
port. Especially, thank you to Jim Minatel, executive editor at Wiley, for giving me a chance to write
this fifth edition; Kelly Talbot, project editor, for managing this project; and Kim Wimpsett, copy edi-
tor, for improving readability and consistency and making sure the text is grammatically correct.

Thanks to technical editor Hannes Du Preez for checking the technical accuracy of the book. His
contributions in strengthening this book are greatly appreciated.

A very special thank you to technical editor Peter Van Weert for his outstanding contributions. His
considerable advice and insights have truly elevated this book to a higher level.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for trying this approach to professional C++ software development.

—Marc Gregoire

CONTENTS

INTRODUCTION	 xlvii

PART I: INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY	3

C++ Crash Course	 4
The Obligatory “Hello, World” Program	 4

Comments	 5
Importing Modules	 5
Preprocessor Directives	 5
The main() Function	 8
I/O Streams	 8

Namespaces	 9
Nested Namespace	 11
Namespace Alias	 11

Literals	 11
Variables	 12

Numerical Limits	 14
Zero Initialization	 15
Casting	 15
Floating-Point Numbers	 16

Operators	 16
Enumerated Types	 19

Old-Style Enumerated Types	 21
Structs	 22
Conditional Statements	 23

if/else Statements	 23
switch Statements	 24

The Conditional Operator	 25
Logical Evaluation Operators	 26
Three-Way Comparisons	 27
Functions	 28

Function Return Type Deduction	 30
Current Function’s Name	 30
Function Overloading	 30

Contents

xvi

Attributes	 30
[[nodiscard]]	 31
[[maybe_unused]]	 31
[[noreturn]]	 32
[[deprecated]]	 32
[[likely]] and [[unlikely]]	 33

C-Style Arrays	 33
std::array	 35
std::vector	 36
std::pair	 36
std::optional	 37
Structured Bindings	 38
Loops	 38

The while Loop	 38
The do/while Loop	 39
The for Loop	 39
The Range-Based for Loop	 39

Initializer Lists	 40
Strings in C++	 40
C++ as an Object-Oriented Language	 41

Defining Classes	 41
Using Classes	 44

Scope Resolution	 44
Uniform Initialization	 45

Designated Initializers	 48
Pointers and Dynamic Memory	 49

The Stack and the Free Store	 49
Working with Pointers	 50
Dynamically Allocated Arrays	 51
Null Pointer Constant	 52

The Use of const	 53
const as a Qualifier for a Type	 53
const Methods	 55

The constexpr Keyword	 56
The consteval Keyword	 57
References	 58

Reference Variables	 58
Reference Data Members	 61
Reference Parameters	 61
Reference Return Values	 64
Deciding Between References and Pointers	 64

Contents

xvii

const_cast()	 68
Exceptions	 69
Type Aliases	 70
typedefs	 71
Type Inference	 72

The auto Keyword	 72
The decltype Keyword	 75

The Standard Library	 75
Your First Bigger C++ Program	 75

An Employee Records System	 76
The Employee Class	 76

Employee.cppm	 76
Employee.cpp	 78
EmployeeTest.cpp	 79

The Database Class	 80
Database.cppm	 80
Database.cpp	 81
DatabaseTest.cpp	 82

The User Interface	 82
Evaluating the Program	 85

Summary	 85
Exercises	 85

CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS	 87

Dynamic Strings	 88
C-Style Strings	 88
String Literals	 90

Raw String Literals	 90
The C++ std::string Class	 92

What Is Wrong with C-Style Strings?	 92
Using the string Class	 92
std::string Literals	 95
CTAD with std::vector and Strings	 96

Numeric Conversions	 96
High-Level Numeric Conversions	 96
Low-Level Numeric Conversions	 97

The std::string_view Class	 100
std::string_view and Temporary Strings	 102
std::string_view Literals	 102

Nonstandard Strings	 102
String Formatting	 103

Format Specifiers	 104

Contents

xviii

width	 104
[fill]align	 105
sign	 105
#	 105
type	 106
precision	 107
0	 107

Format Specifier Errors	 107
Support for Custom Types	 107

Summary	 110
Exercises	 110

CHAPTER 3: CODING WITH STYLE	 111

The Importance of Looking Good	 111
Thinking Ahead	 112
Elements of Good Style	 112

Documenting Your Code	 112
Reasons to Write Comments	 112

Commenting to Explain Usage	 112
Commenting to Explain Complicated Code	 115
Commenting to Convey Meta-information	 116

Commenting Styles	 117
Commenting Every Line	 117
Prefix Comments	 118
Fixed-Format Comments	 119
Ad Hoc Comments	 120
Self-Documenting Code	 122

Decomposition	 122
Decomposition Through Refactoring	 123
Decomposition by Design	 124
Decomposition in This Book	 124

Naming	 124
Choosing a Good Name	 124
Naming Conventions	 125

Counters	 125
Prefixes	 126
Hungarian Notation	 126
Getters and Setters	 127
Capitalization	 127
Namespaced Constants	 127

Using Language Features with Style	 127
Use Constants	 128

Contents

xix

Use References Instead of Pointers	 128
Use Custom Exceptions	 129

Formatting	 129
The Curly Brace Alignment Debate	 130
Coming to Blows over Spaces and Parentheses	 131
Spaces, Tabs, and Line Breaks	 131

Stylistic Challenges	 132
Summary	 132
Exercises	 133

PART II: PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS	 137

What Is Programming Design?	 138
The Importance of Programming Design	 139
Designing for C++	 141
Two Rules for Your Own C++ Designs	 142

Abstraction	 142
Benefiting from Abstraction	 142
Incorporating Abstraction in Your Design	 143

Reuse	 144
Writing Reusable Code	 144
Reusing Designs	 145

Reusing Existing Code	 146
A Note on Terminology	 146
Deciding Whether to Reuse Code or Write it Yourself	 147

Advantages to Reusing Code	 147
Disadvantages to Reusing Code	 148
Putting It Together to Make a Decision	 149

Guidelines for Choosing a Library to Reuse	 149
Understand the Capabilities and Limitations	 149
Understand the Learning Cost	 150
Understand the Performance	 150
Understand Platform Limitations	 153
Understand Licensing	 153
Understand Support and Know Where to Find Help	 154
Prototype	 154
Open-Source Libraries	 155
The C++ Standard Library	 157

Contents

xx

Designing a Chess Program	 157
Requirements	 158
Design Steps	 158

Divide the Program into Subsystems	 158
Choose Threading Models	 160
Specify Class Hierarchies for Each Subsystem	 161
Specify Classes, Data Structures, Algorithms, and Patterns for
Each Subsystem	 162
Specify Error Handling for Each Subsystem	 165

Summary	 166
Exercises	 166

CHAPTER 5: DESIGNING WITH OBJECTS	 169

Am I Thinking Procedurally?	 170
The Object-Oriented Philosophy	 170

Classes	 170
Components	 171
Properties	 171
Behaviors	 172
Bringing It All Together	 172

Living in a World of Classes	 173
Over-Classification	 173
Overly General Classes	 174

Class Relationships	 175
The Has-a Relationship	 175
The Is-a Relationship (Inheritance)	 176

Inheritance Techniques	 177
Polymorphism	 178

The Fine Line Between Has-a and Is-a	 178
The Not-a Relationship	 181
Hierarchies	 182
Multiple Inheritance	 183
Mixin Classes	 184

Summary	 185
Exercises	 185

CHAPTER 6: DESIGNING FOR REUSE	 187

The Reuse Philosophy	 188
How to Design Reusable Code	 189

Use Abstraction	 189
Structure Your Code for Optimal Reuse	 191

Avoid Combining Unrelated or Logically Separate Concepts	 191

Contents

xxi

Use Templates for Generic Data Structures and Algorithms	 193
Provide Appropriate Checks and Safeguards	 195
Design for Extensibility	 196

Design Usable Interfaces	 198
Consider the Audience	 198
Consider the Purpose	 199
Design Interfaces That Are Easy to Use	 200
Design General-Purpose Interfaces	 204
Reconciling Generality and Ease of Use	 205

Designing a Successful Abstraction	 205
The SOLID Principles	 206

Summary	 207
Exercises	 207

PART III: C++ CODING THE PROFESSIONAL WAY

CHAPTER 7: MEMORY MANAGEMENT	 211

Working with Dynamic Memory	 212
How to Picture Memory	 212
Allocation and Deallocation	 213

Using new and delete	 213
What About My Good Friend malloc?	 214
When Memory Allocation Fails	 215

Arrays	 215
Arrays of Primitive Types	 215
Arrays of Objects	 218
Deleting Arrays	 218
Multidimensional Arrays	 219

Working with Pointers	 223
A Mental Model for Pointers	 223
Casting with Pointers	 224

Array-Pointer Duality	 224
Arrays Are Pointers!	 224
Not All Pointers Are Arrays!	 226

Low-Level Memory Operations	 227
Pointer Arithmetic	 227
Custom Memory Management	 228
Garbage Collection	 228
Object Pools	 229

Common Memory Pitfalls	 229
Underallocating Data Buffers and Out-of-Bounds Memory Access	 229

Contents

xxii

Memory Leaks	 231
Finding and Fixing Memory Leaks in Windows with Visual C++	 232
Finding and Fixing Memory Leaks in Linux with Valgrind	 233

Double-Deletion and Invalid Pointers	 234
Smart Pointers	 234

unique_ptr	 235
Creating unique_ptrs	 236
Using unique_ptrs	 237
unique_ptr and C-Style Arrays	 238
Custom Deleters	 239

shared_ptr	 239
Creating and Using shared_ptrs	 239
The Need for Reference Counting	 241
Casting a shared_ptr	 242
Aliasing	 242

weak_ptr	 243
Passing to Functions	 244
Returning from Functions	 244
enable_shared_from_this	 244
The Old and Removed auto_ptr	 245

Summary	 246
Exercises	 246

CHAPTER 8: GAINING PROFICIENCY WITH CLASSES
AND OBJECTS	 249

Introducing the Spreadsheet Example	 250
Writing Classes	 250

Class Definitions	 250
Class Members	 251
Access Control	 251
Order of Declarations	 252
In-Class Member Initializers	 253

Defining Methods	 253
Accessing Data Members	 254
Calling Other Methods	 254
The this Pointer	 255

Using Objects	 257
Objects on the Stack	 257
Objects on the Free Store	 257

Understanding Object Life Cycles	 258
Object Creation	 258

Writing Constructors	 259
Using Constructors	 260

Contents

xxiii

Providing Multiple Constructors	 260
Default Constructors	 261
Constructor Initializers	 265
Copy Constructors	 269
Initializer-List Constructors	 271
Delegating Constructors	 273
Converting Constructors and Explicit Constructors	 273
Summary of Compiler-Generated Constructors	 275

Object Destruction	 276
Assigning to Objects	 277

Declaring an Assignment Operator	 278
Defining an Assignment Operator	 278
Explicitly Defaulted and Deleted Assignment Operator	 280

Compiler-Generated Copy Constructor and Copy Assignment Operator	 280
Distinguishing Copying from Assignment	 280

Objects as Return Values	 280
Copy Constructors and Object Members	 281

Summary	 282
Exercises	 282

CHAPTER 9: MASTERING CLASSES AND OBJECTS	 283

Friends	 284
Dynamic Memory Allocation in Objects	 285

The Spreadsheet Class	 285
Freeing Memory with Destructors	 288
Handling Copying and Assignment	 289

The Spreadsheet Copy Constructor	 291
The Spreadsheet Assignment Operator	 291
Disallowing Assignment and Pass-by-Value	 294

Handling Moving with Move Semantics	 295
Rvalue References	 295
Implementing Move Semantics	 297
Testing the Spreadsheet Move Operations	 301
Implementing a Swap Function with Move Semantics	 303
Using std::move() in Return Statements	 303
Optimal Way to Pass Arguments to Functions	 304

Rule of Zero	 305
More About Methods	 306

static Methods	 306
const Methods	 307

mutable Data Members	 308

Contents

xxiv

Method Overloading	 308
Overloading Based on const	 309
Explicitly Deleting Overloads	 310
Ref-Qualified Methods	 310

Inline Methods	 311
Default Arguments	 313

Different Kinds of Data Members	 314
static Data Members	 314

Inline Variables	 314
Accessing static Data Members within Class Methods	 315
Accessing static Data Members Outside Methods	 316

const static Data Members	 316
Reference Data Members	 317

Nested Classes	 318
Enumerated Types Inside Classes	 319
Operator Overloading	 320

Example: Implementing Addition for SpreadsheetCells	 320
First Attempt: The add Method	 320
Second Attempt: Overloaded operator+ as a Method	 321
Third Attempt: Global operator+	 322

Overloading Arithmetic Operators	 324
Overloading the Arithmetic Shorthand Operators	 324

Overloading Comparison Operators	 325
Compiler-Generated Comparison Operators	 328

Building Types with Operator Overloading	 330
Building Stable Interfaces	 330

Using Interface and Implementation Classes	 330
Summary	 334
Exercises	 335

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES	 337

Building Classes with Inheritance	 338
Extending Classes	 338

A Client’s View of Inheritance	 339
A Derived Class’s View of Inheritance	 340
Preventing Inheritance	 341

Overriding Methods	 342
The virtual Keyword	 342
Syntax for Overriding a Method	 342
A Client’s View of Overridden Methods	 343
The override Keyword	 344

Contents

xxv

The Truth About virtual	 346
Preventing Overriding	 350

Inheritance for Reuse	 350
The WeatherPrediction Class	 350
Adding Functionality in a Derived Class	 351
Replacing Functionality in a Derived Class	 352

Respect Your Parents	 353
Parent Constructors	 353
Parent Destructors	 355
Referring to Parent Names	 356
Casting Up and Down	 358

Inheritance for Polymorphism	 360
Return of the Spreadsheet	 360
Designing the Polymorphic Spreadsheet Cell	 360
The SpreadsheetCell Base Class	 361

A First Attempt	 361
Pure Virtual Methods and Abstract Base Classes	 362

The Individual Derived Classes	 363
StringSpreadsheetCell Class Definition	 363
StringSpreadsheetCell Implementation	 363
DoubleSpreadsheetCell Class Definition and Implementation	 364

Leveraging Polymorphism	 364
Future Considerations	 365

Multiple Inheritance	 367
Inheriting from Multiple Classes	 367
Naming Collisions and Ambiguous Base Classes	 368

Name Ambiguity	 368
Ambiguous Base Classes	 369
Uses for Multiple Inheritance	 371

Interesting and Obscure Inheritance Issues	 371
Changing the Overridden Method’s Return Type	 371
Adding Overloads of Virtual Base Class Methods to Derived Classes	 373
Inherited Constructors	 374

Hiding of Inherited Constructors	 375
Inherited Constructors and Multiple Inheritance	 376
Initialization of Data Members	 377

Special Cases in Overriding Methods	 378
The Base Class Method Is static	 378
The Base Class Method Is Overloaded	 379
The Base Class Method Is private	 380
The Base Class Method Has Default Arguments	 382

Contents

xxvi

The Base Class Method Has a Different Access Specification	 383
Copy Constructors and Assignment Operators in Derived Classes	 385
Run-Time Type Facilities	 386
Non-public Inheritance	 388
Virtual Base Classes	 389

Casts	 390
static_cast()	 390
reinterpret_cast()	 391
std::bit_cast()	 392
dynamic_cast()	 393
Summary of Casts	 394

Summary	 394
Exercises	 395

CHAPTER 11: ODDS AND ENDS	 397

Modules	 397
Module Interface Files	 399
Module Implementation Files	 401
Splitting Interface from Implementation	 402
Visibility vs. Reachability	 403
Submodules	 404
Module Partitions	 405

Implementation Partitions	 407
Header Units	 408

Header Files	 408
Duplicate Definitions	 409
Circular Dependencies	 409
Querying Existence of Headers	 410

Feature Test Macros for Core Language Features	 410
The static Keyword	 411

static Data Members and Methods	 411
static Linkage	 411

The extern Keyword	 413
static Variables in Functions	 414
Order of Initialization of Nonlocal Variables	 415
Order of Destruction of Nonlocal Variables	 415

Contents

xxvii

C Utilities	 415
Variable-Length Argument Lists	 415

Accessing the Arguments	 416
Why You Shouldn’t Use C-Style Variable-Length Argument Lists	 417

Preprocessor Macros	 417
Summary	 419
Exercises	 419

CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES	 421

Overview of Templates	 422
Class Templates	 422

Writing a Class Template	 423
Coding Without Templates	 423
A Template Grid Class	 426
Using the Grid Template	 430

How the Compiler Processes Templates	 431
Selective Instantiation	 431
Template Requirements on Types	 432

Distributing Template Code Between Files	 432
Method Definitions in Same File as Class Template Definition	 433
Method Definitions in Separate File	 433

Template Parameters	 433
Non-type Template Parameters	 434
Default Values for Type Parameters	 436
Class Template Argument Deduction	 436

Method Templates	 438
Method Templates with Non-type Parameters	 440

Class Template Specialization	 442
Deriving from Class Templates	 445
Inheritance vs. Specialization	 446
Alias Templates	 447

Function Templates	 447
Function Template Overloading	 449
Friend Function Templates of Class Templates	 449
More on Template Parameter Deduction	 451
Return Type of Function Templates	 451
Abbreviated Function Template Syntax	 453

Contents

xxviii

Variable Templates	 454
Concepts	 454

Syntax	 455
Constraints Expression	 455

Requires Expressions	 455
Combining Concept Expressions	 457

Predefined Standard Concepts	 457
Type-Constrained auto	 458
Type Constraints and Function Templates	 458

Constraint Subsumption	 460
Type Constraints and Class Templates	 461
Type Constraints and Class Methods	 461
Type Constraints and Template Specialization	 462

Summary	 463
Exercises	 463

CHAPTER 13: DEMYSTIFYING C++ I/O	 465

Using Streams	 466
What Is a Stream, Anyway?	 466
Stream Sources and Destinations	 467
Output with Streams	 468

Output Basics	 468
Methods of Output Streams	 469
Handling Output Errors	 470
Output Manipulators	 471

Input with Streams	 473
Input Basics	 473
Handling Input Errors	 475
Input Methods	 476
Input Manipulators	 480

Input and Output with Objects	 481
Custom Manipulators	 482

String Streams	 482
File Streams	 484

Text Mode vs. Binary Mode	 485
Jumping Around with seek() and tell()	 485
Linking Streams Together	 487

Bidirectional I/O	 488
Filesystem Support Library	 490

Path	 490
Directory Entry	 491

Contents

xxix

Helper Functions	 492
Directory Iteration	 492

Summary	 493
Exercises	 493

CHAPTER 14: HANDLING ERRORS	 495

Errors and Exceptions	 496
What Are Exceptions, Anyway?	 496
Why Exceptions in C++ Are a Good Thing	 496
Recommendation	 498

Exception Mechanics	 498
Throwing and Catching Exceptions	 499
Exception Types	 501
Catching Exception Objects as Reference-to-const	 502
Throwing and Catching Multiple Exceptions	 503

Matching and const	 505
Matching Any Exception	 505

Uncaught Exceptions	 505
noexcept Specifier	 507
noexcept(expression) Specifier	 508
noexcept(expression) Operator	 508
Throw Lists	 508

Exceptions and Polymorphism	 509
The Standard Exception Hierarchy	 509
Catching Exceptions in a Class Hierarchy	 510
Writing Your Own Exception Classes	 512

Source Location	 514
Nested Exceptions	 517

Rethrowing Exceptions	 519
Stack Unwinding and Cleanup	 520

Use Smart Pointers	 521
Catch, Cleanup, and Rethrow	 522

Common Error-Handling Issues	 523
Memory Allocation Errors	 523

Non-throwing new	 524
Customizing Memory Allocation Failure Behavior	 524

Errors in Constructors	 526
Function-Try-Blocks for Constructors	 528
Errors in Destructors	 531

Summary	 531
Exercises	 532

Contents

xxx

CHAPTER 15: OVERLOADING C++ OPERATORS	 535

Overview of Operator Overloading	 536
Why Overload Operators?	 536
Limitations to Operator Overloading	 536
Choices in Operator Overloading	 537

Method or Global Function	 537
Choosing Argument Types	 538
Choosing Return Types	 538
Choosing Behavior	 539

Operators You Shouldn’t Overload	 539
Summary of Overloadable Operators	 540
Rvalue References	 544
Precedence and Associativity	 545
Relational Operators	 546

Overloading the Arithmetic Operators	 547
Overloading Unary Minus and Unary Plus	 547
Overloading Increment and Decrement	 547

Overloading the Bitwise and Binary Logical Operators	 548
Overloading the Insertion and Extraction Operators	 549
Overloading the Subscripting Operator	 550

Providing Read-Only Access with operator[]	 553
Non-integral Array Indices	 555

Overloading the Function Call Operator	 555
Overloading the Dereferencing Operators	 557

Implementing operator*	 558
Implementing operator–>	 558
What in the World Are operator.* and operator–>*?	 559

Writing Conversion Operators	 559
Operator auto	 560
Solving Ambiguity Problems with Explicit Conversion Operators	 561
Conversions for Boolean Expressions	 561

Overloading the Memory Allocation and Deallocation Operators	 563
How new and delete Really Work	 564

The New-Expression and operator new	 564
The Delete-Expression and operator delete	 565

Overloading operator new and operator delete	 565
Explicitly Deleting/Defaulting operator new and operator delete	 568
Overloading operator new and operator delete with Extra Parameters	 568
Overloading operator delete with Size of Memory as Parameter	 569

Overloading User-Defined Literal Operators	 570

Contents

xxxi

Cooked-Mode Literal Operator	 570
Raw-Mode Literal Operator	 571
Standard User-Defined Literals	 571

Summary	 572
Exercises	 572

CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY	 573

Coding Principles	 574
Use of Templates	 574
Use of Operator Overloading	 575

Overview of the C++ Standard Library	 575
Strings	 575
Regular Expressions	 576
I/O Streams	 576
Smart Pointers	 576
Exceptions	 576
Numerics Library	 577
Time and Date Utilities	 579
Random Numbers	 579
Initializer Lists	 579
Pair and Tuple	 579
Vocabulary Types	 580
Function Objects	 580
Filesystem	 580
Multithreading	 580
Type Traits	 581
Standard Integer Types	 581
Standard Library Feature Test Macros	 581
<version>	 582
Source Location	 582
Containers	 582

vector	 583
list	 584
forward_list	 584
deque	 584
array	 584
span	 585
queue	 585
priority_queue	 585
stack	 586

Contents

xxxii

set and multiset	 586
map and multimap	 587
Unordered Associative Containers/Hash Tables	 587
bitset	 588
Summary of Standard Library Containers	 588

Algorithms	 591
Nonmodifying Sequence Algorithms	 591
Modifying Sequence Algorithms	 593
Operational Algorithms	 595
Swap Algorithms	 595
Partition Algorithms	 595
Sorting Algorithms	 596
Binary Search Algorithms	 597
Set Algorithms	 597
Heap Algorithms	 598
Minimum/Maximum Algorithms	 598
Numerical Processing Algorithms	 599
Permutation Algorithms	 600
Choosing an Algorithm	 600

Ranges Library	 601
What’s Missing from the Standard Library	 601

Summary	 601
Exercises	 601

CHAPTER 17: UNDERSTANDING ITERATORS AND
THE RANGES LIBRARY	 603

Iterators	 604
Getting Iterators for Containers	 606
Iterator Traits	 608
Examples	 609

Stream Iterators	 610
Output Stream Iterator	 610
Input Stream Iterator	 611

Iterator Adapters	 612
Insert Iterators	 612
Reverse Iterators	 614
Move Iterators	 615

Ranges	 616
Range-Based Algorithms	 617

Projection	 618
Views	 619

Contents

xxxiii

Modifying Elements Through a View	 622
Mapping Elements	 623

Range Factories	 623
Input Streams as Views	 625

Summary	 625
Exercises	 626

CHAPTER 18: STANDARD LIBRARY CONTAINERS	 627

Containers Overview	 628
Requirements on Elements	 628
Exceptions and Error Checking	 630

Sequential Containers	 631
vector	 631

vector Overview	 631
vector Details	 633
Move Semantics	 646
vector Example: A Round-Robin Class	 647

The vector<bool> Specialization	 652
deque	 653
list	 653

Accessing Elements	 653
Iterators	 654
Adding and Removing Elements	 654
list Size	 654
Special list Operations	 654
list Example: Determining Enrollment	 656

forward_list	 657
array	 660
span	 661

Container Adapters	 663
queue	 663

queue Operations	 663
queue Example: A Network Packet Buffer	 664

priority_queue	 666
priority_queue Operations	 666
priority_queue Example: An Error Correlator	 667

stack	 668
stack Operations	 668
stack Example: Revised Error Correlator	 669

Ordered Associative Containers	 669
The pair Utility Class	 669
map	 670

Contents

xxxiv

Constructing maps	 670
Inserting Elements	 671
map Iterators	 674
Looking Up Elements	 675
Removing Elements	 675
Nodes	 676
map Example: Bank Account	 676

multimap	 679
multimap Example: Buddy Lists	 680

set	 682
set Example: Access Control List	 682

multiset	 684
Unordered Associative Containers or Hash Tables	 684

Hash Functions	 684
unordered_map	 686

unordered_map Example: Phone Book	 689
unordered_multimap	 690
unordered_set/unordered_multiset	 691

Other Containers	 691
Standard C-Style Arrays	 691
Strings	 692
Streams	 693
bitset	 693

bitset Basics	 693
Bitwise Operators	 694
bitset Example: Representing Cable Channels	 694

Summary	 697
Exercises	 698

CHAPTER 19: FUNCTION POINTERS, FUNCTION OBJECTS,
AND LAMBDA EXPRESSIONS	 699

Function Pointers	 700
Pointers to Methods (and Data Members)	 702
std::function	 703
Function Objects	 705

Writing Your First Function Object	 705
Function Objects in the Standard Library	 706

Arithmetic Function Objects	 706
Comparison Function Objects	 707
Logical Function Objects	 709
Bitwise Function Objects	 709
Adapter Function Objects	 709

Contents

xxxv

Lambda Expressions	 713
Syntax	 713
Lambda Expressions as Parameters	 718
Generic Lambda Expressions	 719
Lambda Capture Expressions	 719
Templated Lambda Expressions	 720
Lambda Expressions as Return Type	 721
Lambda Expressions in Unevaluated Contexts	 722
Default Construction, Copying, and Assigning	 722

Invokers	 722
Summary	 723
Exercises	 723

CHAPTER 20: MASTERING STANDARD LIBRARY ALGORITHMS	 725

Overview of Algorithms	 726
The find and find_if Algorithms	 726
The accumulate Algorithm	 729
Move Semantics with Algorithms	 730
Algorithm Callbacks	 730

Algorithm Details	 731
Non-modifying Sequence Algorithms	 731

Search Algorithms	 731
Specialized Searchers	 733
Comparison Algorithms	 733
Counting Algorithms	 736

Modifying Sequence Algorithms	 737
generate	 737
transform	 738
copy	 739
move	 740
replace	 742
erase	 742
remove	 743
unique	 744
shuffle	 745
sample	 745
reverse	 746
Shifting Elements	 746

Operational Algorithms	 747
for_each	 747
for_each_n	 749

Contents

xxxvi

Partition Algorithms	 749
Sorting Algorithms	 750
Binary Search Algorithms	 751
Set Algorithms	 752
Minimum/Maximum Algorithms	 755
Parallel Algorithms	 756
Constrained Algorithms	 758
Numerical Processing Algorithms	 758

iota	 759
Reduce Algorithms	 759
Scan Algorithms	 760

Summary	 761
Exercises	 761

CHAPTER 21: STRING LOCALIZATION AND REGULAR
EXPRESSIONS	 763

Localization	 763
Wide Characters	 764
Localizing String Literals	 764
Non-Western Character Sets	 765
Locales and Facets	 767

Using Locales	 767
Global Locale	 769
Character Classification	 769
Character Conversion	 769
Using Facets	 770
Conversions	 771

Regular Expressions	 772
ECMAScript Syntax	 773

Anchors	 773
Wildcards	 773
Alternation	 773
Grouping	 774
Repetition	 774
Precedence	 775
Character Set Matches	 775
Word Boundaries	 777
Back References	 778
Lookahead	 778
Regular Expressions and Raw String Literals	 778
Common Regular Expressions	 779

The regex Library	 779

Contents

xxxvii

regex_match()	 781
regex_match() Example	 781

regex_search()	 783
regex_search() Example	 784

regex_iterator	 784
regex_iterator Example	 785

regex_token_iterator	 785
regex_token_iterator Examples	 786

regex_replace()	 788
regex_replace() Examples	 789

Summary	 790
Exercises	 791

CHAPTER 22: DATE AND TIME UTILITIES	 793

Compile-Time Rational Numbers	 794
Duration	 796
Clock	 801
Time Point	 802
Date	 804
Time Zone	 807
Summary	 808
Exercises	 808

CHAPTER 23: RANDOM NUMBER FACILITIES	 809

C-Style Random Number Generation	 810
Random Number Engines	 811
Random Number Engine Adapters	 813
Predefined Engines and Engine Adapters	 813
Generating Random Numbers	 814
Random Number Distributions	 816
Summary	 819
Exercises	 819

CHAPTER 24: ADDITIONAL LIBRARY UTILITIES	 821

Vocabulary Types	 821
variant	 821
any	 823

Tuples	 824
Decompose Tuples	 826

Structured Bindings	 827
tie	 827

Contents

xxxviii

Concatenation	 828
Comparisons	 828
make_from_tuple	 829
apply	 829

Summary	 829
Exercises	 830

PART IV: MASTERING ADVANCED FEATURES OF C++

CHAPTER 25: CUSTOMIZING AND EXTENDING
THE STANDARD LIBRARY	 833

Allocators	 834
Extending the Standard Library	 835

Why Extend the Standard Library?	 835
Writing a Standard Library Algorithm	 836

find_all()	 836
Writing a Standard Library Container	 837

A Basic Directed Graph	 837
Making directed_graph a Standard Library Container	 848
Adding Support for Allocators	 866
Improving graph_node	 871
Additional Standard Library-Like Functionality	 872
Further Improvements	 874
Other Container Types	 874

Summary	 875
Exercises	 875

CHAPTER 26: ADVANCED TEMPLATES	 877

More About Template Parameters	 878
More About Template Type Parameters	 878
Introducing Template Template Parameters	 880
More About Non-type Template Parameters	 882

Class Template Partial Specialization	 884
Emulating Function Partial Specialization with Overloading	 888
Template Recursion	 889

An N-Dimensional Grid: First Attempt	 889
A Real N-Dimensional Grid	 890

Variadic Templates	 892
Type-Safe Variable-Length Argument Lists	 893

Contents

xxxix

Variable Number of Mixin Classes	 895
Fold Expressions	 896

Metaprogramming	 898
Factorial at Compile Time	 898
Loop Unrolling	 899
Printing Tuples	 900

constexpr if	 902
Using a Compile-Time Integer Sequence with Folding	 903

Type Traits	 903
Using Type Categories	 905
Using Type Relationships	 907
Using the conditional Type Trait	 907
Using enable_if	 909
Using constexpr if to Simplify enable_if Constructs	 910
Logical Operator Traits	 912
Static Assertions	 912

Metaprogramming Conclusion	 913
Summary	 913
Exercises	 913

CHAPTER 27: MULTITHREADED PROGRAMMING WITH C++	 915

Introduction	 916
Race Conditions	 918
Tearing	 919
Deadlocks	 919
False-Sharing	 920

Threads	 921
Thread with Function Pointer	 921
Thread with Function Object	 922
Thread with Lambda	 924
Thread with Member Function	 924
Thread Local Storage	 924
Canceling Threads	 925
Automatically Joining Threads	 925
Retrieving Results from Threads	 926
Copying and Rethrowing Exceptions	 926

Atomic Operations Library	 929
Atomic Operations	 931
Atomic Smart Pointers	 932
Atomic References	 932
Using Atomic Types	 933
Waiting on Atomic Variables	 935

Contents

xl

Mutual Exclusion	 936
Mutex Classes	 936

Spinlock	 936
Non-timed Mutex Classes	 937
Timed Mutex Classes	 939

Locks	 939
lock_guard	 939
unique_lock	 940
shared_lock	 941
Acquiring Multiple Locks at Once	 941
scoped_lock	 942

std::call_once	 942
Examples Using Mutual Exclusion Objects	 943

Thread-Safe Writing to Streams	 943
Using Timed Locks	 945
Double-Checked Locking	 946

Condition Variables	 947
Spurious Wake-Ups	 948
Using Condition Variables	 949

Latches	 950
Barriers	 951
Semaphores	 951
Futures	 952

std::promise and std::future	 953
std::packaged_task	 954
std::async	 955
Exception Handling	 956
std::shared_future	 956

Example: Multithreaded Logger Class	 958
Thread Pools	 962
Coroutines	 963
Threading Design and Best Practices	 965
Summary	 966
Exercises	 966

PART V: C++ SOFTWARE ENGINEERING

CHAPTER 28: MAXIMIZING SOFTWARE ENGINEERING METHODS	 971

The Need for Process	 972
Software Life Cycle Models	 973

The Waterfall Model	 973

Contents

xli

Benefits of the Waterfall Model	 974
Drawbacks of the Waterfall Model	 974

Sashimi Model	 975
Spiral-like Models	 975

Benefits of a Spiral-like Model	 976
Drawbacks of a Spiral-like Model	 977

Agile	 978
Software Engineering Methodologies	 978

The Unified Process	 979
The Rational Unified Process	 980

RUP as a Product	 980
RUP as a Process	 980
RUP in Practice	 981

Scrum	 981
Roles	 981
The Process	 982
Benefits of Scrum	 983
Drawbacks of Scrum	 983

eXtreme Programming	 984
XP in Theory	 984
XP in Practice	 988

Software Triage	 988
Building Your Own Process and Methodology	 989

Be Open to New Ideas	 989
Bring New Ideas to the Table	 989
Recognize What Works and What Doesn’t Work	 989
Don’t Be a Renegade	 989

Source Code Control	 990
Summary	 992
Exercises	 992

CHAPTER 29: WRITING EFFICIENT C++	 993

Overview of Performance and Efficiency	 994
Two Approaches to Efficiency	 994
Two Kinds of Programs	 994
Is C++ an Inefficient Language?	 994

Language-Level Efficiency	 995
Handle Objects Efficiently	 996

Pass-by-Value or Pass-by-Reference	 996
Return-by-Value or Return-by-Reference	 998
Catch Exceptions by Reference	 998

Contents

xlii

Use Move Semantics	 998
Avoid Creating Temporary Objects	 998
Return-Value Optimization	 999

Pre-allocate Memory	 1000
Use Inline Methods and Functions	 1001

Design-Level Efficiency	 1001
Cache Where Necessary	 1002
Use Object Pools	 1003

An Object Pool Implementation	 1003
Using the Object Pool	 1006

Profiling	 1008
Profiling Example with gprof	 1009

First Design Attempt	 1009
Profiling the First Design Attempt	 1012
Second Design Attempt	 1014
Profiling the Second Design Attempt	 1015

Profiling Example with Visual C++ 2019	 1016
Summary	 1019
Exercises	 1019

CHAPTER 30: BECOMING ADEPT AT TESTING	 1021

Quality Control	 1022
Whose Responsibility Is Testing?	 1022
The Life Cycle of a Bug	 1022
Bug-Tracking Tools	 1023

Unit Testing	 1025
Approaches to Unit Testing	 1026
The Unit Testing Process	 1026

Define the Granularity of Your Tests	 1027
Brainstorm the Individual Tests	 1028
Create Sample Data and Results	 1029
Write the Tests	 1029
Run the Tests	 1030

Unit Testing in Action	 1031
Introducing the Microsoft Visual C++ Testing Framework	 1031
Writing the First Test	 1033
Building and Running Tests	 1034
Negative Tests	 1034
Adding the Real Tests	 1035

Contents

xliii

Debugging Tests	 1038
Basking in the Glorious Light of Unit Test Results	 1038

Fuzz Testing	 1039
Higher-Level Testing	 1039

Integration Tests	 1039
Sample Integration Tests	 1039
Methods of Integration Testing	 1040

System Tests	 1041
Regression Tests	 1041

Tips for Successful Testing	 1042
Summary	 1043
Exercises	 1043

CHAPTER 31: CONQUERING DEBUGGING	 1045

The Fundamental Law of Debugging	 1046
Bug Taxonomies	 1046
Avoiding Bugs	 1046
Planning for Bugs	 1047

Error Logging	 1047
Debug Traces	 1049

Debug Mode	 1049
Ring Buffers	 1053

Assertions	 1057
Crash Dumps	 1058

Debugging Techniques	 1059
Reproducing Bugs	 1059
Debugging Reproducible Bugs	 1060
Debugging Nonreproducible Bugs	 1060
Debugging Regressions	 1061
Debugging Memory Problems	 1062

Categories of Memory Errors	 1062
Tips for Debugging Memory Errors	 1065

Debugging Multithreaded Programs	 1066
Debugging Example: Article Citations	 1067

Buggy Implementation of an ArticleCitations Class	 1067
Testing the ArticleCitations Class	 1070

Lessons from the ArticleCitations Example	 1079
Summary	 1079
Exercises	 1080

Contents

xliv

CHAPTER 32: INCORPORATING DESIGN TECHNIQUES
AND FRAMEWORKS	 1083

“I Can Never Remember How to. . .”	 1084
. . .Write a Class	 1084
. . .Derive from an Existing Class	 1086
. . .Write a Lambda Expression	 1086
. . .Use the Copy-and-Swap Idiom	 1087
. . .Throw and Catch Exceptions	 1088
. . .Write to a File	 1089
. . .Read from a File	 1089
. . .Write a Class Template	 1090
. . .Constrain Template Parameters	 1090

There Must Be a Better Way	 1091
Resource Acquisition Is Initialization	 1091
Double Dispatch	 1093

Attempt #1: Brute Force	 1094
Attempt #2: Single Polymorphism with Overloading	 1095
Attempt #3: Double Dispatch	 1096

Mixin Classes	 1098
Using Multiple Inheritance	 1098
Using Class Templates	 1100

Object-Oriented Frameworks	 1101
Working with Frameworks	 1101
The Model-View-Controller Paradigm	 1102

Summary	 1103
Exercises	 1103

CHAPTER 33: APPLYING DESIGN PATTERNS	 1105

Dependency Injection	 1106
Example: A Logging Mechanism	 1106
Implementation of a Dependency-Injected Logger	 1106
Using Dependency Injection	 1108

The Abstract Factory Pattern	 1109
Example: A Car Factory Simulation	 1109
Implementation of an Abstract Factory	 1110
Using an Abstract Factory	 1111

The Factory Method Pattern	 1112
Example: A Second Car Factory Simulation	 1112
Implementation of a Factory	 1114
Using a Factory	 1115

Contents

xlv

Other Types of Factories	 1117
Other Uses of Factories	 1117

The Adapter Pattern	 1118
Example: Adapting a Logger Class	 1118
Implementation of an Adapter	 1119
Using an Adapter	 1120

The Proxy Pattern	 1120
Example: Hiding Network Connectivity Issues	 1121
Implementation of a Proxy	 1121
Using a Proxy	 1122

The Iterator Pattern	 1123
The Observer Pattern	 1124

Example: Exposing Events from Subjects	 1124
Implementation of an Observable	 1124
Using an Observer	 1125

The Decorator Pattern	 1126
Example: Defining Styles in Web Pages	 1127
Implementation of a Decorator	 1127
Using a Decorator	 1128

The Chain of Responsibility Pattern	 1129
Example: Event Handling	 1129
Implementation of a Chain of Responsibility	 1129
Using a Chain of Responsibility	 1131

The Singleton Pattern	 1132
Example: A Logging Mechanism	 1132
Implementation of a Singleton	 1133
Using a Singleton	 1135

Summary	 1135
Exercises	 1135

CHAPTER 34: DEVELOPING CROSS-PLATFORM AND CROSS-
LANGUAGE APPLICATIONS	 1137

Cross-Platform Development	 1138
Architecture Issues	 1138

Size of Integers	 1138
Binary Compatibility	 1139
Address Sizes	 1140
Byte Order	 1140

Implementation Issues	 1142
Compiler Quirks and Extensions	 1142

Contents

xlvi

Library Implementations	 1142
Handling Different Implementations	 1143

Platform-Specific Features	 1143
Cross-Language Development	 1145

Mixing C and C++	 1145
Shifting Paradigms	 1145
Linking with C Code	 1149
Calling C++ Code from C#	 1151
C++/CLI to Use C# Code from C++ and C++ from C#	 1152
Calling C++ Code from Java with JNI	 1154
Calling Scripts from C++ Code	 1156
Calling C++ Code from Scripts	 1156

A Practical Example: Encrypting Passwords	 1157
Calling Assembly Code from C++	 1159

Summary	 1160
Exercises	 1160

PART VI: APPENDICES

APPENDIX A: C++ INTERVIEWS	 1165

APPENDIX B: ANNOTATED BIBLIOGRAPHY	 1191

APPENDIX C: STANDARD LIBRARY HEADER FILES	 1203

APPENDIX D: INTRODUCTION TO UML	 1213

INDEX	 1219

 INTRODUCTION

 The development of C++ started in 1982 by Bjarne Stroustrup, a Danish computer scientist, as the
successor of C with Classes. In 1985, the first edition of The C++ Programming Language book was
released. The first standardized version of C++ was released in 1998, called C++98. In 2003, C++03
came out and contained a few small updates. After that, it was silent for a while, but traction slowly
started building up, resulting in a major update of the language in 2011, called C++11. From then
on, the C++ Standard Committee has been on a three-year cycle to release updated versions, giving
us C++14, C++17, and now C++20. All in all, with the release of C++20 in 2020, C++ is almost 40
years old and still going strong. In most rankings of programming languages in 2020, C++ is in the
top four. It is being used on an extremely wide range of hardware, going from small devices with
embedded microprocessors all the way up to multirack supercomputers. Besides wide hardware
support, C++ can be used to tackle almost any programming job, be it games on mobile platforms,
performance-critical artificial intelligence (AI) and machine learning (ML) software, real-time 3-D
graphics engines, low-level hardware drivers, entire operating systems, and so on. The performance of
C++ programs is hard to match with any other programming language, and as such, it is the de facto
language for writing fast, powerful, and enterprise-class object-oriented programs. As popular as
C++ has become, the language is surprisingly difficult to grasp in full. There are simple, but powerful,
techniques that professional C++ programmers use that don ’ t show up in traditional texts, and there
are useful parts of C++ that remain a mystery even to experienced C++ programmers.

 Too often, programming books focus on the syntax of the language instead of its real-world use. The
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and
providing an example. Professional C++ does not follow this pattern. Instead of giving you just the
nuts and bolts of the language with little practical context, this book will teach you how to use C++
in the real world. It will show you the little-known features that will make your life easier, as well as
the programming techniques that separate novices from professional programmers.

 WHO THIS BOOK IS FOR

 Even if you have used the language for years, you might still be unfamiliar with the more advanced
features of C++, or you might not be using the full capabilities of the language. Perhaps you write
competent C++ code, but would like to learn more about design and good programming style in C++.
Or maybe you ’ re relatively new to C++ but want to learn the “right” way to program from the start.
This book will meet those needs and bring your C++ skills to the professional level.

 Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming
a professional C++ programmer, it assumes that you have some knowledge about programming.
Chapter 1, “A Crash Course in C++ and the Standard Library,” covers the basics of C++ as a refresher,
but it is not a substitute for actual training in programming. If you are just starting with C++ but you

INTRODUCTION

xlviii

have significant experience in another programming language such as C, Java, or C#, you should be
able to pick up most of what you need from Chapter 1.

 In any case, you should have a solid foundation in programming fundamentals. You should know
about loops, functions, and variables. You should know how to structure a program, and you should
be familiar with fundamental techniques such as recursion. You should have some knowledge of com-
mon data structures such as queues, and useful algorithms such as sorting and searching. You don ’ t
need to know about object-oriented programming just yet—that is covered in Chapter 5, “Designing
with Objects.”

 You will also need to be familiar with the compiler you will be using to compile your code. Two com-
pilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other compilers,
refer to the documentation that came with your compiler.

WHAT THIS BOOK COVERS

Professional C++ uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++20 features
throughout this fifth edition. These features are not just isolated to a few chapters or sections; instead,
examples have been updated to use new features when appropriate.

Professional C++ teaches you more than just the syntax and language features of C++. It also
emphasizes programming methodologies, reusable design patterns, and good programming style. The
Professional C++ methodology incorporates the entire software development process, from designing
and writing code to debugging and working in groups. This approach will enable you to master the
C++ language and its idiosyncrasies, as well as take advantage of its powerful capabilities for large-
scale software development.

 Imagine users who have learned all of the syntax of C++ without seeing a single example of its use.
They know just enough to be dangerous! Without examples, they might assume that all code should
go in the main() function of the program or that all variables should be global—practices that are
generally not considered hallmarks of good programming.

 Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented programming,
and the best ways to use existing libraries. They have also developed an arsenal of useful code and
reusable ideas.

 By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser known and often misunderstood language features.
You will gain an appreciation for object-oriented design and acquire top-notch debugging skills.
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you can
actually apply to your daily work.

 There are many good reasons to make the effort to be a professional C++ programmer as opposed
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will

INTRODUCTION

xlix

help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will
make you a better programmer and a more valuable employee. While this book can ’ t guarantee you a
promotion, it certainly won ’ t hurt.

 HOW THIS BOOK IS STRUCTURED

 This book is made up of five parts.

 Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a foun-
dation of C++ knowledge. Following the crash course, Part I goes deeper into working with strings,
because strings are used extensively in most examples throughout the book. The last chapter of Part I
explores how to write readable C++ code.

 Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read about
the importance of design, the object-oriented methodology, and the importance of code reuse.

 Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the professional
point of view. You will read about the best ways to manage memory in C++, how to create reusable
classes, and how to leverage important language features such as inheritance. You will also learn
techniques for input and output, error handling, string localization, how to work with regular expres-
sions, and how to structure your code in reusable components called modules. You will read about
how to implement operator overloading, how to write templates, how to put restrictions on template
parameters using concepts, and how to unlock the power of lambda expressions and function objects.
This part also explains the C++ Standard Library, including containers, iterators, ranges, and algo-
rithms. You will also read about some additional libraries that are available in the standard, such as
the libraries to work with time, dates, time zones, random numbers, and the filesystem.

 Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and
how to use multithreading to take advantage of multiprocessor and multicore systems.

 Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You ’ ll read about
the engineering practices being used by programming organizations today; how to write efficient C++
code; software testing concepts, such as unit testing and regression testing; techniques used to debug
C++ programs; how to incorporate design techniques, frameworks, and conceptual object-oriented
design patterns into your own code; and solutions for cross-language and cross-platform code.

 The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a
brief introduction to the Unified Modeling Language (UML).

 This book is not a reference of every single class, method, and function available in C++. The book
C++17 Standard Library Quick Reference by Peter Van Weert and Marc Gregoire (Apress, 2019.

INTRODUCTION

l

ISBN: 978-1-4842-4923-9) is a condensed reference to all essential data structures, algorithms, and
functions provided by the C++ Standard Library up until the C++17 standard. Appendix B lists a
couple more references. Two excellent online references are:

➤ cppreference.com : You can use this reference online or download an offl ine version for use
when you are not connected to the Internet.

➤ cplusplus.com/reference/

 When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed
C++ references.

 The following are additional excellent online resources:

➤ github.com/isocpp/CppCoreGuidelines : The C++ Core Guidelines are a collaborative
effort led by Bjarne Stroustrup, inventor of the C++ language itself. They are the result of
many person-years of discussion and design across a number of organizations. The aim of
the guidelines is to help people to use modern C++ effectively. The guidelines are focused on
relatively higher-level issues, such as interfaces, resource management, memory management,
and concurrency.

➤ github.com/Microsoft/GSL : This is an implementation by Microsoft of the Guidelines
Support Library (GSL) containing functions and types that are suggested for use by the C++
Core Guidelines. It ’ s a header-only library.

➤ isocpp.org/faq : This is a large collection of frequently asked C++ questions.

➤ stackoverflow.com : Search for answers to common programming questions, or ask your
own questions.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, a number of conventions
are used throughout this book.

 WARNING Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

 NOTE Tips, hints, tricks, and asides to the current discussion are placed in boxes
like this one.

INTRODUCTION

li

 As for styles in the text:

 Important words are italic when they are introduced.

 Keyboard strokes are shown like this: Ctrl+A.

 Filenames and code within the text are shown like so: monkey.cpp .

 URLs are shown like this: wrox.com .

 Code is presented in three different ways:

 // Comments in code are shown like this.
In code examples, new and important code is highlighted like this.
 Code that's less important in the present context or that has been shown before is
formatted like this.

 Paragraphs or sections that are specific to the C++20 standard have a little C++20 icon on the left,
just as this paragraph does. C++11, C++14, and C++17 features are not marked with any icon.

 WHAT YOU NEED TO USE THIS BOOK

 All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of
C++ that have been standardized, and not on vendor-specific compiler extensions.

 Any C++ Compiler
 You can use whichever C++ compiler you like. If you don ’ t have a C++ compiler yet, you can down-
load one for free. There are a lot of choices. For example, for Windows, you can download Microsoft
Visual Studio Community Edition, which is free and includes Visual C++. For Linux, you can use
GCC or Clang, which are also free.

 The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documenta-
tion that came with your compiler for more details.

C++20

 COMPILERS AND C++20 FEATURE SUPPORT

 This book discusses new features introduced with the C++20 standard. At the time
of this writing, no compilers were fully C++20 compliant yet. Some new features
were only supported by some compilers and not others, while other features were
not yet supported by any compiler. Compiler vendors are hard at work to catch up
with all new features, and I ’ m sure it won ’ t take long before there will be fully
C++20-compliant compilers available. You can keep track of which compiler
supports which features at en.cppreference.com/w/cpp/compiler_support .

INTRODUCTION

lii

 Example: Microsoft Visual C++ 2019
 First, you need to create a project. Start Visual C++ 2019, and on the welcome screen, click the Cre-
ate A New Project button. If the welcome screen is not shown, select File ➪ New ➪ Project. In the
Create A New Project dialog, search for the Console App project template with tags C++, Windows,
and Console, and click Next. Specify a name for the project and a location where to save it, and
click Create.

 Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this
docking window is not visible, select View ➪ Solution Explorer. A newly created project will contain
a file called <projectname>.cpp. You can start writing your C++ code in that .cpp file, or if you
want to compile source code files from the downloadable source archive for this book, select the
<projectname>.cpp file in the Solution Explorer and delete it. You can add new files or existing files
to a project by right-clicking the project name in the Solution Explorer and then selecting Add ➪ New
Item or Add ➪ Existing Item.

 At the time of this writing, Visual C++ 2019 did not yet automatically enable C++20 features. To
enable C++20 features, in the Solution Explorer window, right-click your project and click Properties.
In the Properties window, go to Configuration Properties ➪ C/C++ ➪ Language, and set the C++ Lan-
guage Standard option to ISO C++20 Standard or Preview - Features from the Latest C++ Working
Draft, whichever is available in your version of Visual C++. These options are accessible only if your
project contains at least one .cpp file.

 Finally, select Build ➪ Build Solution to compile your code. When it compiles without errors, you can
run it with Debug ➪ Start Debugging.

 Module Support
 At the time of this writing, Visual C++ 2019 did not yet have full support for modules. Authoring and
consuming your own modules usually works just fine, but importing Standard Library headers such
as the following did not yet work out of the box:

 import <iostream>;

 COMPILERS AND C++20 MODULE SUPPORT

 At the time of this writing, there was no compiler available yet that fully supported
C++20 modules. There was experimental support in some of the compilers, but it
was still incomplete. This book uses modules everywhere. We did our best to make
sure all sample code would compile once compilers fully support modules, but since
we were not able to compile and test all examples, some errors might have crept in.
When you use a compiler with support for modules and you encounter problems
with any of the code samples, double-check the list of errata for the book at www
.wiley.com/go/proc++5e to see if it ’ s a known issue. If your compiler does not yet
support modules, you can convert modularized code to non-modularized code, as
explained briefly in Chapter 11, “Odds and Ends.”

INTRODUCTION

liii

 To make such import declarations work, for the time being you need to add a separate header file
to your project, for example called HeaderUnits.h , which contains an import declaration for every
Standard Library header you want to import. Here ’ s an example:

 // HeaderUnits.h
 #pragma once
 import <iostream>;
 import <vector>;
 import <optional>;
 import <utility>;
 // ...

 Next, right-click the HeaderUnits.h file in the Solution Explorer and click Properties. In Configura-
tion Properties ➪ General, set Item Type to C/C++ Compiler and click Apply. Next, in Configuration
Properties ➪ C/C++ ➪ Advanced, set Compile As to Compile as C++ Header Unit (/exportHeader)
and click OK.

 When you now recompile your project, all import declarations that have a corresponding import
declaration in your HeaderUnits.h file should compile fine.

 If you are using module implementation partitions (see Chapter 11), also known as internal parti-
tions, then right-click all files containing such implementation partitions, click Properties, go to
Configuration Properties ➪ C/C++ ➪ Advanced, and set the Compile As option to Compile as C++
Module Internal Partition (/internalPartition) and click OK.

 Example: GCC
 Create your source code files with any text editor you prefer and save them to a directory. To compile
your code, open a terminal and run the following command, specifying all your .cpp files that you
want to compile:

 g++ -std=c++2a -o <executable_name> <source1.cpp> [source2.cpp ...]

 The -std=c++2a option is required to tell GCC to enable C++20 support. This option will change to
-std=C++20 once GCC is fully C++20 compliant.

 Module Support
 At the time of this writing, GCC only had experimental support for modules through a special ver-
sion of GCC (branch devel/c++-modules). When you are using such a version of GCC, module sup-
port is enabled with the -fmodules-ts option, which might change to -fmodules in the future.

 Unfortunately, import declarations of Standard Library headers such as the following were not yet
properly supported:

 import <iostream>;

 If that ’ s the case, simply replace such import declarations with corresponding #include directives:

 #include <iostream>

INTRODUCTION

liv

 For example, the AirlineTicket example from Chapter 1 uses modules. After having replaced the
imports for Standard Library headers with #include directives, you can compile the AirlineTicket
example by changing to the directory containing the code and running the following command:

 g++ -std=c++2a -fmodules-ts -o AirlineTicket AirlineTicket.cppm AirlineTicket.cpp
AirlineTicketTest.cpp

 When it compiles without errors, you can run it as follows:

 ./AirlineTicket

 std::format Support
 Many code samples in this book use std::format() , introduced in Chapter 1. At the time of this
writing, there was no compiler yet that had support for std::format() . However, as long as your
compiler doesn ’ t support std::format() yet, you can use the freely available {fmt} library as a
drop-in replacement:

1. Download the latest version of the {fmt} library from https://fmt.dev/ and extract the
code on your machine.

2. Copy the include/fmt and src directories to fmt and src subdirectories in your project
directory, and then add fmt/core.h, fmt/format.h, fmt/format-inl.h, and src/format

.cc to your project.

3. Add a file called format (no extension) to the root directory of your project and add the
following code to it:

 #pragma once
 #define FMT_HEADER_ONLY
 #include "fmt/format.h"
 namespace std
 {
 using fmt::format;
 using fmt::format_error;
 using fmt::formatter;
 }

4. Finally, add your project root directory (the directory containing the format file) as an addi-
tional include directory for your project. For example, in Visual C++, right click your project
in the Solution Explorer, click Properties, go to Configuration Properties ➪ C/C++ ➪ Gen-
eral, and add $(ProjectDir); to the front of the Additional Include Directories option.

 NOTE Don ’ t forget to undo these steps once your compiler supports the standard
std::format() .

INTRODUCTION

lv

 READER SUPPORT FOR THIS BOOK

 The following sections describe different options to get support for this book.

 Companion Download Files
 As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. However, I suggest you type in all the
code manually because it greatly benefits the learning process and your memory. All of the source
code used in this book is available for download at www.wiley.com/go/proc++5e .

 NOTE Because many books have similar titles, you may fi nd it easiest to search by
ISBN; for this book, the ISBN is 978-1-119-69540-0.

 Once you ’ ve downloaded the code, just decompress it with your favorite decompression tool.

 How to Contact the Publisher
 If you believe you ’ ve found a mistake in this book, please bring it to our attention. At John Wiley &
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur.

 To submit your possible errata, please e-mail it to our Customer Service Team at wileysupport@
wiley.com with “Possible Book Errata Submission” as a subject line.

 How to Contact the Author
 If you have any questions while reading this book, the author can easily be reached at
marc.gregoire@nuonsoft.com and will try to get back to you in a timely manner.

Introduction to Professional C++
PART I

▸▸ CHAPTER 1: A Crash Course in C++ and the Standard Library

▸▸ CHAPTER 2: Working with Strings and String Views

▸▸ CHAPTER 3: Coding with Style

1
A Crash Course in C++
and the Standard Library

WHAT’S IN THIS CHAPTER?

➤➤ A brief overview of the most important parts and syntax of the
C++ language and the Standard Library

➤➤ How to write a basic class

➤➤ How scope resolution works

➤➤ What uniform initialization is

➤➤ The use of const

➤➤ What pointers, references, exceptions, and type aliases are

➤➤ Basics of type inference

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wiley.com/go/proc++5e on the
Download Code tab.

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a
foundation of knowledge before embarking on the rest of this book. This chapter is not a
comprehensive lesson in the C++ programming language or the Standard Library. Certain basic
points, such as what a program is and what recursion is, are not covered. Esoteric points, such
as the definition of a union, or the volatile keyword, are also omitted. Certain parts of the C
language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth
coverage in later chapters.

4  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

This chapter aims to cover the parts of C++ that programmers encounter every day. For example, if
you’re fairly new to C++ and don’t understand what a reference variable is, you’ll learn about that
kind of variable here. You’ll also learn the basics of how to use the functionality available in the
Standard Library, such as vector containers, optional values, string objects, and more. These
parts of the Standard Library are briefly introduced in Chapter 1 so that these modern constructs can
be used throughout examples in this book from the beginning.

If you already have significant experience with C++, skim this chapter to make sure that there aren’t
any fundamental parts of the language on which you need to brush up. If you’re new to C++, read
this chapter carefully and make sure you understand the examples. If you need additional introduc-
tory information, consult the titles listed in Appendix B.

C++ CRASH COURSE

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to be
an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances and
rough edges of the C language were addressed as well. Because C++ is based on C, some of the syntax
you’ll see in this section will look familiar to you if you are an experienced C programmer. The two
languages certainly have their differences, though. As evidence, The C++ Programming Language
by C++ creator Bjarne Stroustrup (fourth edition; Addison-Wesley Professional, 2013) weighs in at
1,368 pages, while Kernighan and Ritchie’s The C Programming Language (second edition; Prentice
Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout for new or unfamil-
iar syntax!

The Obligatory “Hello, World” Program
In all its glory, the following code is the simplest C++ program you’re likely to encounter:

// helloworld.cpp
import <iostream>;

int main()
{
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

This code, as you might expect, prints the message “Hello, World!” on the screen. It is a simple pro-
gram and unlikely to win any awards, but it does exhibit the following important concepts about the
format of a C++ program:

➤➤ Comments

➤➤ Importing modules

➤➤ The main() function

➤➤ I/O streams

C++ Crash Course  ❘  5

These concepts are briefly explained in the following sections (along with header files as an alterna-
tive for modules, in the event that your compiler does not support C++20 modules yet).

Comments
The first line of the program is a comment, a message that exists for the programmer only and is
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and fol-
lowing examples, two slashes indicate that whatever follows on that line is a comment:

// helloworld.cpp

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline
comments start with /* and end with */. The following code shows a multiline comment in action
(or, more appropriately, inaction):

/* This is a multiline comment.
 The compiler will ignore it.
 */

Comments are covered in detail in Chapter 3, “Coding with Style.”

Importing Modules
One of the bigger new features of C++20 is support for modules, replacing the old mechanism of
so-called header files. If you want to use functionality from a module, you need to import that mod-
ule. This is done with an import declaration. The first line of the “Hello, World” application imports
the module called <iostream>, which declares the input and output mechanisms provided by C++:

import <iostream>;

If the program did not import that module, it would be unable to perform its only task of out-
putting text.

Since this is a book about C++20, this book uses modules everywhere. All functionality provided by
the C++ Standard Library is provided in well-defined modules. Your own custom types and func-
tionality can also be provided through self-written modules, as you will learn throughout this book.
If your compiler does not yet support modules, simply replace import declarations with the proper
#include preprocessor directives, discussed in the next section.

Preprocessor Directives
If your compiler does not yet support C++20 modules, then instead of an import declaration such as
import <iostream>;, you need to write the following preprocessor directive:

#include <iostream>

In short, building a C++ program is a three-step process. First, the code is run through a preproces-
sor, which recognizes meta-information about the code. Next, the code is compiled, or translated
into machine-readable object files. Finally, the individual object files are linked together into a single
application.

C++20

6  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

Directives aimed at the preprocessor start with the # character, as in the line #include <iostream>
in the previous example. In this case, an #include directive tells the preprocessor to take everything
from the <iostream> header file and make it available to the current file. The <iostream> header
declares the input and output mechanisms provided by C++.

The most common use of header files is to declare functions that will be defined elsewhere. A function
declaration tells the compiler how a function is called, declaring the number and types of parameters,
and the function return type. A definition contains the actual code for the function. Before the intro-
duction of modules in C++20, declarations usually went into header files, typically with extension .h,
while definitions usually went into source files, typically with extension .cpp. With modules, it is
no longer necessary to split declarations from definitions, although, as you will see, it is still possi-
ble to do so.

NOTE  In C, the names of the Standard Library header files usually end in .h,
such as <stdio.h>, and namespaces are not used.

In C++, the .h suffix is omitted for Standard Library headers, such as
<iostream>, and everything is defined in the std namespace or a subnamespace
of std.

The Standard Library headers from C still exist in C++ but in two versions.

➤➤ The recommended versions without a .h suffix but
with a c prefix. These versions put everything in the
std namespace (for example, <cstdio>).

➤➤ The old versions with the .h suffix. These versions do
not use namespaces (for example, <stdio.h>).

Note that these C Standard Library headers are not guaranteed to be importable
with an import declaration. To be safe, use #include <cxyz> instead of import
<cxyz>;.

The following table shows some of the most common preprocessor directives:

PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#include [file] The specified file is inserted
into the code at the location of
the directive.

Almost always used to include
header files so that code can
make use of functionality defined
elsewhere.

C++ Crash Course  ❘  7

PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#define [id] [value] Every occurrence of the
specified identifier is replaced
with the specified value.

Often used in C to define a
constant value or a macro. C++
provides better mechanisms
for constants and most types
of macros. Macros can be
dangerous, so use them
cautiously. See Chapter 11,”Odds
and Ends,” for details.

#ifdef [id]

#endif

#ifndef [id]

#endif

Code within the ifdef (“if
defined”) or ifndef (“if
not defined”) blocks are
conditionally included or
omitted based on whether the
specified identifier has been
defined with #define.

Used most frequently to protect
against circular includes. Each
header file starts with an #ifndef
checking the absence of an
identifier, followed by a #define
directive to define that identifier.
The header file ends with an
#endif. This prevents the file
from being included multiple
times; see the example after
this table.

#pragma [xyz] xyz is compiler dependent.
Most compilers support a
#pragma to display a warning
or error if the directive is
reached during preprocessing.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER_H
#define MYHEADER_H
// ... the contents of this header file
#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can
be rewritten as follows:

#pragma once
// ... the contents of this header file

Chapter 11 discusses this in a bit more detail. But, as mentioned, this book uses C++20 modules
instead of old-style header files.

8  ❘  CHAPTER 1   A Crash Course in C++ and the Standard Library

The main() Function
main() is, of course, where the program starts. The return type of main() is an int, indicating the
result status of the program. You can omit any explicit return statements in main(), in which case
zero is returned automatically. The main() function either takes no parameters or takes two param-
eters as follows:

int main(int argc, char* argv[])

argc gives the number of arguments passed to the program, and argv contains those arguments.
Note that argv[0] can be the program name, but it might as well be an empty string, so do not rely
on it; instead, use platform-specific functionality to retrieve the program name. The important thing
to remember is that the actual arguments start at index 1.

I/O Streams
I/O streams are covered in depth in Chapter 13, “Demystifying C++ I/O,” but the basics of output
and input are simple. Think of an output stream as a laundry chute for data. Anything you toss into
it will be output appropriately. std::cout is the chute corresponding to the user console, or standard
out. There are other chutes, including std::cerr, which outputs to the error console. The << opera-
tor tosses data down the chute. In the preceding example, a quoted string of text is sent to standard
out. Output streams allow multiple types of data to be sent down the stream sequentially on a single
line of code. The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

Starting with C++20, though, it is recommended to use std::format(), defined in <format>, to
perform string formatting. The format() function is discussed in detail in Chapter 2, “Working with
Strings and String Views,” but in its most basic form it can be used to rewrite the previous statement
as follows:

std::cout << std::format("There are {} ways I love you.", 219) << std::endl;

std::endl represents an end-of-line sequence. When the output stream encounters std::endl, it
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape
sequence, which refers to a new-line character. Escape sequences can be used within any quoted string
of text. The following table shows the most common ones:

ESCAPE SEQUENCE MEANING

\n New line: moves the cursor to the beginning of the next line

\r Carriage return: moves the cursor to the beginning of the current line, but
does not advance to the next line

\t Tab

\\ Backslash character

\" Quotation mark

C++ Crash Course  ❘  9

WARNING  Keep in mind that endl inserts a new line into the stream and
flushes everything currently in its buffers down the chute. Overusing endl,
for example in a loop, is not recommended because it will have a performance
impact. On the other hand, inserting \n into the stream also inserts a new line
but does not automatically flush the buffers.

Streams can also be used to accept input from the user. The simplest way to do this is to use the >>
operator with an input stream. The std::cin input stream accepts keyboard input from the user.
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See Chap-
ter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been
done with the trusty old printf() and scanf() functions. While these functions can still be used
in C++, I strongly recommend using format() and the streams library instead, mainly because the
printf() and scanf() family of functions do not provide any type safety.

Namespaces
Namespaces address the problem of naming conflicts between different pieces of code. For example,
you might be writing some code that has a function called foo(). One day, you decide to start using
a third-party library, which also has a foo() function. The compiler has no way of knowing which
version of foo() you are referring to within your code. You can’t change the library’s function name,
and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names
are defined. To place code in a namespace, enclose it within a namespace block. Here’s an example:

namespace mycode {
 void foo()
 {
 std::cout << "foo() called in the mycode namespace" << std::endl;
 }
}

By placing your version of foo() in the namespace mycode, you are isolating it from the foo() func-
tion provided by the third-party library. To call the namespace-enabled version of foo(), prepend the
namespace onto the function name by using ::, also called the scope resolution operator, as follows:

mycode::foo(); // Calls the "foo" function in the "mycode" namespace

Any code that falls within a mycode namespace block can call other code within the same namespace
without explicitly prepending the namespace. This implicit namespace is useful in making the code
more readable. You can also avoid prepending of namespaces with a using directive. This directive

