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      INTRODUCTION 

   The development of C++ started in 1982 by Bjarne Stroustrup, a Danish computer scientist, as the 
successor of C with Classes. In 1985, the first edition of The C++ Programming Language  book was 
released. The first standardized version of C++ was released in 1998, called C++98. In 2003, C++03 
came out and contained a few small updates. After that, it was silent for a while, but traction slowly
started building up, resulting in a major update of the language in 2011, called C++11. From then
on, the C++ Standard Committee has been on a three-year cycle to release updated versions, giving 
us C++14, C++17, and now C++20. All in all, with the release of C++20 in 2020, C++ is almost 40
years old and still going strong. In most rankings of programming languages in 2020, C++ is in the 
top four. It is being used on an extremely wide range of hardware, going from small devices with
embedded microprocessors all the way up to multirack supercomputers. Besides wide hardware
support, C++ can be used to tackle almost any programming job, be it games on mobile platforms, 
performance-critical artificial intelligence (AI) and machine learning (ML) software, real-time 3-D
graphics engines, low-level hardware drivers, entire operating systems, and so on. The performance of 
C++ programs is hard to match with any other programming language, and as such, it is the de facto
language for writing fast, powerful, and enterprise-class object-oriented programs. As popular as
C++ has become, the language is surprisingly difficult to grasp in full. There are simple, but powerful,
techniques that professional C++ programmers use that don ’ t show up in traditional texts, and there 
are useful parts of C++ that remain a mystery even to experienced C++ programmers. 

 Too often, programming books focus on the syntax of the language instead of its real-world use. The 
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and 
providing an example. Professional C++  does not follow this pattern. Instead of giving you just the 
nuts and bolts of the language with little practical context, this book will teach you how to use C++
in the real world. It will show you the little-known features that will make your life easier, as well as
the programming techniques that separate novices from professional programmers.  

  WHO THIS BOOK IS FOR 

 Even if you have used the language for years, you might still be unfamiliar with the more advanced 
features of C++, or you might not be using the full capabilities of the language. Perhaps you write
competent C++ code, but would like to learn more about design and good programming style in C++. 
Or maybe you ’ re relatively new to C++ but want to learn the “right” way to program from the start.
This book will meet those needs and bring your C++ skills to the professional level. 

 Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming 
a professional C++ programmer, it assumes that you have some knowledge about programming. 
Chapter 1, “A Crash Course in C++ and the Standard Library,” covers the basics of C++ as a refresher,
but it is not a substitute for actual training in programming. If you are just starting with C++ but you
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have significant experience in another programming language such as C, Java, or C#, you should be
able to pick up most of what you need from Chapter 1. 

 In any case, you should have a solid foundation in programming fundamentals. You should know 
about loops, functions, and variables. You should know how to structure a program, and you should 
be familiar with fundamental techniques such as recursion. You should have some knowledge of com-
mon data structures such as queues, and useful algorithms such as sorting and searching. You don ’ t
need to know about object-oriented programming just yet—that is covered in Chapter 5, “Designing 
with Objects.”

 You will also need to be familiar with the compiler you will be using to compile your code. Two com-
pilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other compilers, 
refer to the documentation that came with your compiler.

WHAT THIS BOOK COVERS 

Professional C++  uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++20 features 
throughout this fifth edition. These features are not just isolated to a few chapters or sections; instead,
examples have been updated to use new features when appropriate. 

Professional C++  teaches you more than just the syntax and language features of C++. It also
emphasizes programming methodologies, reusable design patterns, and good programming style. The 
Professional C++  methodology incorporates the entire software development process, from designing 
and writing code to debugging and working in groups. This approach will enable you to master the 
C++ language and its idiosyncrasies, as well as take advantage of its powerful capabilities for large-
scale software development. 

 Imagine users who have learned all of the syntax of C++ without seeing a single example of its use. 
They know just enough to be dangerous! Without examples, they might assume that all code should 
go in the main()  function of the program or that all variables should be global—practices that are 
generally not considered hallmarks of good programming. 

 Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented programming, 
and the best ways to use existing libraries. They have also developed an arsenal of useful code and 
reusable ideas. 

 By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser known and often misunderstood language features. 
You will gain an appreciation for object-oriented design and acquire top-notch debugging skills. 
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you can
actually apply to your daily work. 

 There are many good reasons to make the effort to be a professional C++ programmer as opposed 
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will
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help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will 
make you a better programmer and a more valuable employee. While this book can ’ t guarantee you a 
promotion, it certainly won ’ t hurt.  

  HOW THIS BOOK IS STRUCTURED 

 This book is made up of five parts. 

 Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a foun-
dation of C++ knowledge. Following the crash course, Part I goes deeper into working with strings, 
because strings are used extensively in most examples throughout the book. The last chapter of Part I 
explores how to write readable  C++ code.

 Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read about 
the importance of design, the object-oriented methodology, and the importance of code reuse. 

 Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the professional
point of view. You will read about the best ways to manage memory in C++, how to create reusable 
classes, and how to leverage important language features such as inheritance. You will also learn
techniques for input and output, error handling, string localization, how to work with regular expres-
sions, and how to structure your code in reusable components called modules. You will read about
how to implement operator overloading, how to write templates, how to put restrictions on template
parameters using concepts, and how to unlock the power of lambda expressions and function objects. 
This part also explains the C++ Standard Library, including containers, iterators, ranges, and algo-
rithms. You will also read about some additional libraries that are available in the standard, such as
the libraries to work with time, dates, time zones, random numbers, and the filesystem. 

 Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of 
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more 
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and 
how to use multithreading to take advantage of multiprocessor and multicore systems. 

 Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You ’ ll read about 
the engineering practices being used by programming organizations today; how to write efficient C++
code; software testing concepts, such as unit testing and regression testing; techniques used to debug
C++ programs; how to incorporate design techniques, frameworks, and conceptual object-oriented
design patterns into your own code; and solutions for cross-language and cross-platform code. 

 The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a 
brief introduction to the Unified Modeling Language (UML). 

 This book is not a reference of every single class, method, and function available in C++. The book
C++17 Standard Library Quick Reference  by Peter Van Weert and Marc Gregoire (Apress, 2019.
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ISBN: 978-1-4842-4923-9) is a condensed reference to all essential data structures, algorithms, and 
functions provided by the C++ Standard Library up until the C++17 standard. Appendix B lists a
couple more references. Two excellent online references are:

➤ cppreference.com : You can use this reference online or download an offl ine version for use
when you are not connected to the Internet. 

➤ cplusplus.com/reference/

 When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed 
C++ references. 

 The following are additional excellent online resources:

➤ github.com/isocpp/CppCoreGuidelines : The C++ Core Guidelines  are a collaborative
effort led by Bjarne Stroustrup, inventor of the C++ language itself. They are the result of 
many person-years of discussion and design across a number of organizations. The aim of 
the guidelines is to help people to use modern C++ effectively. The guidelines are focused on 
relatively higher-level issues, such as interfaces, resource management, memory management, 
and concurrency. 

➤ github.com/Microsoft/GSL : This is an implementation by Microsoft of the  Guidelines
Support Library  (GSL) containing functions and types that are suggested for use by the C++
Core Guidelines. It ’ s a header-only library.

➤ isocpp.org/faq : This is a large collection of frequently asked C++ questions.

➤ stackoverflow.com : Search for answers to common programming questions, or ask your
own questions.    

  CONVENTIONS 

 To help you get the most from the text and keep track of what ’ s happening, a number of conventions 
are used throughout this book.

 WARNING     Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text. 

 NOTE    Tips, hints, tricks, and asides to the current discussion are placed in boxes 
like this one. 
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 As for styles in the text:

  Important words are italic  when they are introduced. 

 Keyboard strokes are shown like this: Ctrl+A. 

 Filenames and code within the text are shown like so: monkey.cpp . 

 URLs are shown like this:  wrox.com .   

 Code is presented in three different ways:

  // Comments in code are shown like this.  
In code examples, new and important code is highlighted like this.
  Code that's less important in the present context or that has been shown before is
formatted like this.    

  Paragraphs or sections that are specific to the C++20 standard have a little C++20 icon on the left,
just as this paragraph does. C++11, C++14, and C++17 features are not marked with any icon.  

  WHAT YOU NEED TO USE THIS BOOK 

 All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of 
C++ that have been standardized, and not on vendor-specific compiler extensions. 

  Any C++ Compiler 
 You can use whichever C++ compiler you like. If you don ’ t have a C++ compiler yet, you can down-
load one for free. There are a lot of choices. For example, for Windows, you can download Microsoft 
Visual Studio Community Edition, which is free and includes Visual C++. For Linux, you can use
GCC or Clang, which are also free. 

 The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documenta-
tion that came with your compiler for more details.            

C++20

   COMPILERS AND C++20 FEATURE SUPPORT  

  This book discusses new features introduced with the C++20 standard. At the time 
of this writing, no compilers were fully C++20 compliant yet. Some new features
were only supported by some compilers and not others, while other features were
not yet supported by any compiler. Compiler vendors are hard at work to catch up 
with all new features, and I ’ m sure it won ’ t take long before there will be fully
C++20-compliant compilers available. You can keep track of which compiler 
supports which features at en.cppreference.com/w/cpp/compiler_support .
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  Example: Microsoft Visual C++ 2019
 First, you need to create a project. Start Visual C++ 2019, and on the welcome screen, click the Cre-
ate A New Project button. If the welcome screen is not shown, select File ➪ New ➪ Project. In the
Create A New Project dialog, search for the Console App project template with tags C++, Windows, 
and Console, and click Next. Specify a name for the project and a location where to save it, and 
click Create. 

 Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this 
docking window is not visible, select View ➪ Solution Explorer. A newly created project will contain 
a file called <projectname>.cpp. You can start writing your C++ code in that .cpp  file, or if you 
want to compile source code files from the downloadable source archive for this book, select the
<projectname>.cpp  file in the Solution Explorer and delete it. You can add new files or existing files
to a project by right-clicking the project name in the Solution Explorer and then selecting Add ➪ New 
Item or Add ➪ Existing Item. 

 At the time of this writing, Visual C++ 2019 did not yet automatically enable C++20 features. To 
enable C++20 features, in the Solution Explorer window, right-click your project and click Properties. 
In the Properties window, go to Configuration Properties ➪ C/C++ ➪ Language, and set the C++ Lan-
guage Standard option to ISO C++20 Standard or Preview - Features from the Latest C++ Working
Draft, whichever is available in your version of Visual C++. These options are accessible only if your
project contains at least one .cpp  file. 

 Finally, select Build ➪ Build Solution to compile your code. When it compiles without errors, you can 
run it with Debug ➪ Start Debugging. 

  Module Support
 At the time of this writing, Visual C++ 2019 did not yet have full support for modules. Authoring and
consuming your own modules usually works just fine, but importing Standard Library headers such
as the following did not yet work out of the box: 

  import <iostream>;     

   COMPILERS AND C++20 MODULE SUPPORT 

  At the time of this writing, there was no compiler available yet that fully supported
C++20 modules. There was experimental support in some of the compilers, but it
was still incomplete. This book uses modules everywhere. We did our best to make
sure all sample code would compile once compilers fully support modules, but since 
we were not able to compile and test all examples, some errors might have crept in. 
When you use a compiler with support for modules and you encounter problems
with any of the code samples, double-check the list of errata for the book at www
.wiley.com/go/proc++5e  to see if it ’ s a known issue. If your compiler does not yet 
support modules, you can convert modularized code to non-modularized code, as
explained briefly in Chapter 11, “Odds and Ends.”  
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 To make such import declarations work, for the time being you need to add a separate header file 
to your project, for example called HeaderUnits.h , which contains an import declaration for every
Standard Library header you want to import. Here ’ s an example:  

  // HeaderUnits.h  
  #pragma once
  import <iostream>;
  import <vector>;  
  import <optional>;
  import <utility>;  
  // ...     

 Next, right-click the HeaderUnits.h  file in the Solution Explorer and click Properties. In Configura-
tion Properties ➪ General, set Item Type to C/C++ Compiler and click Apply. Next, in Configuration
Properties ➪ C/C++ ➪ Advanced, set Compile As to Compile as C++ Header Unit (/exportHeader)
and click OK. 

 When you now recompile your project, all import declarations that have a corresponding import 
declaration in your HeaderUnits.h  file should compile fine. 

 If you are using module implementation partitions (see Chapter 11), also known as internal parti-
tions, then right-click all files containing such implementation partitions, click Properties, go to
Configuration Properties ➪ C/C++ ➪ Advanced, and set the Compile As option to Compile as C++ 
Module Internal Partition (/internalPartition) and click OK.   

  Example: GCC
 Create your source code files with any text editor you prefer and save them to a directory. To compile 
your code, open a terminal and run the following command, specifying all your .cpp  files that you
want to compile: 

  g++ -std=c++2a -o <executable_name> <source1.cpp> [source2.cpp ...]     

 The  -std=c++2a  option is required to tell GCC to enable C++20 support. This option will change to 
-std=C++20  once GCC is fully C++20 compliant. 

  Module Support
 At the time of this writing, GCC only had experimental support for modules through a special ver-
sion of GCC (branch devel/c++-modules). When you are using such a version of GCC, module sup-
port is enabled with the -fmodules-ts  option, which might change to -fmodules  in the future. 

 Unfortunately, import declarations of Standard Library headers such as the following were not yet 
properly supported: 

  import <iostream>;

 If that ’ s the case, simply replace such import declarations with corresponding  #include  directives:  

  #include <iostream>
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 For example, the AirlineTicket  example from Chapter 1 uses modules. After having replaced the 
imports for Standard Library headers with #include  directives, you can compile the  AirlineTicket 
example by changing to the directory containing the code and running the following command: 

  g++ -std=c++2a -fmodules-ts -o AirlineTicket AirlineTicket.cppm AirlineTicket.cpp
AirlineTicketTest.cpp    

 When it compiles without errors, you can run it as follows:  

  ./AirlineTicket       

  std::format Support 
 Many code samples in this book use std::format() , introduced in Chapter 1. At the time of this
writing, there was no compiler yet that had support for std::format() . However, as long as your
compiler doesn ’ t support  std::format()  yet, you can use the freely available {fmt} library as a 
drop-in replacement:

1.   Download the latest version of the {fmt} library from  https://fmt.dev/  and extract the 
code on your machine. 

2.  Copy the include/fmt  and  src  directories to  fmt  and  src  subdirectories in your project
directory, and then add fmt/core.h, fmt/format.h, fmt/format-inl.h, and src/format

.cc to your project. 

3.  Add a file called format  (no extension) to the root directory of your project and add the
following code to it:   

  #pragma once
  #define FMT_HEADER_ONLY
  #include "fmt/format.h"
  namespace std  
  {  
      using fmt::format;
      using fmt::format_error;  
      using fmt::formatter;  
  }     

4.    Finally, add your project root directory (the directory containing the  format  file) as an addi-
tional include directory for your project. For example, in Visual C++, right click your project
in the Solution Explorer, click Properties, go to Configuration Properties ➪ C/C++ ➪ Gen-
eral, and add $(ProjectDir); to the front of the Additional Include Directories option.  

 NOTE     Don ’ t forget to undo these steps once your compiler supports the standard 
std::format() . 
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  READER SUPPORT FOR THIS BOOK 

 The following sections describe different options to get support for this book. 

  Companion Download Files
 As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. However, I suggest you type in all the 
code manually because it greatly benefits the learning process and your memory. All of the source 
code used in this book is available for download at www.wiley.com/go/proc++5e .

 NOTE     Because many books have similar titles, you may fi nd it easiest to search by
ISBN; for this book, the ISBN is 978-1-119-69540-0. 

    

 Once you ’ ve downloaded the code, just decompress it with your favorite decompression tool.  

  How to Contact the Publisher  
 If you believe you ’ ve found a mistake in this book, please bring it to our attention. At John Wiley & 
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur. 

 To submit your possible errata, please e-mail it to our Customer Service Team at wileysupport@
wiley.com  with “Possible Book Errata Submission” as a subject line.  

  How to Contact the Author 
 If you have any questions while reading this book, the author can easily be reached at 
marc.gregoire@nuonsoft.com  and will try to get back to you in a timely manner.    
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1
A Crash Course in C++ 
and the Standard Library

WHAT’S IN THIS CHAPTER?

➤➤ A brief overview of the most important parts and syntax of the 
C++ language and the Standard Library

➤➤ How to write a basic class

➤➤ How scope resolution works

➤➤ What uniform initialization is

➤➤ The use of const

➤➤ What pointers, references, exceptions, and type aliases are

➤➤ Basics of type inference

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s 
code download on this book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a 
foundation of knowledge before embarking on the rest of this book. This chapter is not a 
comprehensive lesson in the C++ programming language or the Standard Library. Certain basic 
points, such as what a program is and what recursion is, are not covered. Esoteric points, such 
as the definition of a union, or the volatile keyword, are also omitted. Certain parts of the C 
language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth 
coverage in later chapters.
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This chapter aims to cover the parts of C++ that programmers encounter every day. For example, if 
you’re fairly new to C++ and don’t understand what a reference variable is, you’ll learn about that 
kind of variable here. You’ll also learn the basics of how to use the functionality available in the 
Standard Library, such as vector containers, optional values, string objects, and more. These 
parts of the Standard Library are briefly introduced in Chapter 1 so that these modern constructs can 
be used throughout examples in this book from the beginning.

If you already have significant experience with C++, skim this chapter to make sure that there aren’t 
any fundamental parts of the language on which you need to brush up. If you’re new to C++, read 
this chapter carefully and make sure you understand the examples. If you need additional introduc-
tory information, consult the titles listed in Appendix B.

C++ CRASH COURSE

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to be 
an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances and 
rough edges of the C language were addressed as well. Because C++ is based on C, some of the syntax 
you’ll see in this section will look familiar to you if you are an experienced C programmer. The two 
languages certainly have their differences, though. As evidence, The C++ Programming Language 
by C++ creator Bjarne Stroustrup (fourth edition; Addison-Wesley Professional, 2013) weighs in at 
1,368 pages, while Kernighan and Ritchie’s The C Programming Language (second edition; Prentice 
Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout for new or unfamil-
iar syntax!

The Obligatory “Hello, World” Program
In all its glory, the following code is the simplest C++ program you’re likely to encounter:

// helloworld.cpp
import <iostream>;
 
int main()
{
    std::cout << "Hello, World!" << std::endl;
    return 0;
}

This code, as you might expect, prints the message “Hello, World!” on the screen. It is a simple pro-
gram and unlikely to win any awards, but it does exhibit the following important concepts about the 
format of a C++ program:

➤➤ Comments

➤➤ Importing modules

➤➤ The main() function

➤➤ I/O streams
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These concepts are briefly explained in the following sections (along with header files as an alterna-
tive for modules, in the event that your compiler does not support C++20 modules yet).

Comments
The first line of the program is a comment, a message that exists for the programmer only and is 
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and fol-
lowing examples, two slashes indicate that whatever follows on that line is a comment:

// helloworld.cpp

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline 
comments start with /* and end with */. The following code shows a multiline comment in action 
(or, more appropriately, inaction):

/* This is a multiline comment.
   The compiler will ignore it.
 */

Comments are covered in detail in Chapter 3, “Coding with Style.” 

Importing Modules
One of the bigger new features of C++20 is support for modules, replacing the old mechanism of 
so-called header files. If you want to use functionality from a module, you need to import that mod-
ule. This is done with an import declaration. The first line of the “Hello, World” application imports 
the module called <iostream>, which declares the input and output mechanisms provided by C++:

import <iostream>;

If the program did not import that module, it would be unable to perform its only task of out-
putting text.

Since this is a book about C++20, this book uses modules everywhere. All functionality provided by 
the C++ Standard Library is provided in well-defined modules. Your own custom types and func-
tionality can also be provided through self-written modules, as you will learn throughout this book. 
If your compiler does not yet support modules, simply replace import declarations with the proper 
#include preprocessor directives, discussed in the next section.

Preprocessor Directives
If your compiler does not yet support C++20 modules, then instead of an import declaration such as 
import <iostream>;, you need to write the following preprocessor directive:

#include <iostream>

In short, building a C++ program is a three-step process. First, the code is run through a preproces-
sor, which recognizes meta-information about the code. Next, the code is compiled, or translated 
into machine-readable object files. Finally, the individual object files are linked together into a single 
application.

C++20
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Directives aimed at the preprocessor start with the # character, as in the line #include <iostream> 
in the previous example. In this case, an #include directive tells the preprocessor to take everything 
from the <iostream> header file and make it available to the current file. The <iostream> header 
declares the input and output mechanisms provided by C++.

The most common use of header files is to declare functions that will be defined elsewhere. A function 
declaration tells the compiler how a function is called, declaring the number and types of parameters, 
and the function return type. A definition contains the actual code for the function. Before the intro-
duction of modules in C++20, declarations usually went into header files, typically with extension .h,  
while definitions usually went into source files, typically with extension .cpp. With modules, it is 
no longer necessary to split declarations from definitions, although, as you will see, it is still possi-
ble to do so.

NOTE  In C, the names of the Standard Library header files usually end in .h, 
such as <stdio.h>, and namespaces are not used.

In C++, the .h suffix is omitted for Standard Library headers, such as 
<iostream>, and everything is defined in the std namespace or a subnamespace 
of std.

The Standard Library headers from C still exist in C++ but in two versions.

➤➤ The recommended versions without a .h suffix but 
with a c prefix. These versions put everything in the 
std namespace (for example, <cstdio>).

➤➤ The old versions with the .h suffix. These versions do 
not use namespaces (for example, <stdio.h>).

Note that these C Standard Library headers are not guaranteed to be importable 
with an import declaration. To be safe, use #include <cxyz> instead of import 
<cxyz>;.

The following table shows some of the most common preprocessor directives:

PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#include [file] The specified file is inserted 
into the code at the location of 
the directive.

Almost always used to include 
header files so that code can 
make use of functionality defined 
elsewhere.
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PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#define [id] [value] Every occurrence of the 
specified identifier is replaced 
with the specified value.

Often used in C to define a 
constant value or a macro. C++ 
provides better mechanisms 
for constants and most types 
of macros. Macros can be 
dangerous, so use them 
cautiously. See Chapter 11,”Odds 
and Ends,” for details.

#ifdef [id]

#endif

 

#ifndef [id]

#endif

Code within the ifdef (“if 
defined”) or ifndef (“if 
not defined”) blocks are 
conditionally included or 
omitted based on whether the 
specified identifier has been 
defined with #define.

Used most frequently to protect 
against circular includes. Each 
header file starts with an #ifndef 
checking the absence of an 
identifier, followed by a #define 
directive to define that identifier. 
The header file ends with an 
#endif. This prevents the file 
from being included multiple 
times; see the example after 
this table.

#pragma [xyz] xyz is compiler dependent. 
Most compilers support a 
#pragma to display a warning 
or error if the directive is 
reached during preprocessing.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER_H
#define MYHEADER_H
// ... the contents of this header file
#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can 
be rewritten as follows:

#pragma once
// ... the contents of this header file

Chapter 11 discusses this in a bit more detail. But, as mentioned, this book uses C++20 modules 
instead of old-style header files.
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The main() Function
main() is, of course, where the program starts. The return type of main() is an int, indicating the 
result status of the program. You can omit any explicit return statements in main(), in which case 
zero is returned automatically. The main() function either takes no parameters or takes two param-
eters as follows:

int main(int argc, char* argv[])

argc gives the number of arguments passed to the program, and argv contains those arguments. 
Note that argv[0] can be the program name, but it might as well be an empty string, so do not rely 
on it; instead, use platform-specific functionality to retrieve the program name. The important thing 
to remember is that the actual arguments start at index 1.

I/O Streams
I/O streams are covered in depth in Chapter 13, “Demystifying C++ I/O,” but the basics of output 
and input are simple. Think of an output stream as a laundry chute for data. Anything you toss into 
it will be output appropriately. std::cout is the chute corresponding to the user console, or standard 
out. There are other chutes, including std::cerr, which outputs to the error console. The << opera-
tor tosses data down the chute. In the preceding example, a quoted string of text is sent to standard 
out. Output streams allow multiple types of data to be sent down the stream sequentially on a single 
line of code. The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

Starting with C++20, though, it is recommended to use std::format(), defined in <format>, to 
perform string formatting. The format() function is discussed in detail in Chapter 2, “Working with 
Strings and String Views,” but in its most basic form it can be used to rewrite the previous statement 
as follows:

std::cout << std::format("There are {} ways I love you.", 219) << std::endl;

std::endl represents an end-of-line sequence. When the output stream encounters std::endl, it 
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape 
sequence, which refers to a new-line character. Escape sequences can be used within any quoted string 
of text. The following table shows the most common ones:

ESCAPE SEQUENCE MEANING

\n New line: moves the cursor to the beginning of the next line

\r Carriage return: moves the cursor to the beginning of the current line, but 
does not advance to the next line

\t Tab

\\ Backslash character

\" Quotation mark
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WARNING  Keep in mind that endl inserts a new line into the stream and 
flushes everything currently in its buffers down the chute. Overusing endl, 
for example in a loop, is not recommended because it will have a performance 
impact. On the other hand, inserting \n into the stream also inserts a new line 
but does not automatically flush the buffers.

Streams can also be used to accept input from the user. The simplest way to do this is to use the >> 
operator with an input stream. The std::cin input stream accepts keyboard input from the user. 
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See Chap-
ter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been 
done with the trusty old printf() and scanf() functions. While these functions can still be used 
in C++, I strongly recommend using format() and the streams library instead, mainly because the 
printf() and scanf() family of functions do not provide any type safety.

Namespaces
Namespaces address the problem of naming conflicts between different pieces of code. For example, 
you might be writing some code that has a function called foo(). One day, you decide to start using 
a third-party library, which also has a foo() function. The compiler has no way of knowing which 
version of foo() you are referring to within your code. You can’t change the library’s function name, 
and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names 
are defined. To place code in a namespace, enclose it within a namespace block. Here’s an example:

namespace mycode {
    void foo()
    {
        std::cout << "foo() called in the mycode namespace" << std::endl;
    }
}

By placing your version of foo() in the namespace mycode, you are isolating it from the foo() func-
tion provided by the third-party library. To call the namespace-enabled version of foo(), prepend the 
namespace onto the function name by using ::, also called the scope resolution operator, as follows:

mycode::foo();    // Calls the "foo" function in the "mycode" namespace

Any code that falls within a mycode namespace block can call other code within the same namespace 
without explicitly prepending the namespace. This implicit namespace is useful in making the code 
more readable. You can also avoid prepending of namespaces with a using directive. This directive 


